Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538673

RESUMO

Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originate from Josephson junctions wiring and can limit qubit relaxation time. We experimentally extracted dielectric loss tangents of qubit elements and showed that dominant surface loss of wiring can occur for real qubits designs. Finally, we experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.

2.
Sci Rep ; 13(1): 6772, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185459

RESUMO

Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip. So, its variation is to be minimized. According to the Ambegaokar-Baratoff formula, critical current is related to normal-state resistance, which can be measured at room temperature. In this study, we focused on the dominant source of non-uniformity for the Josephson junction critical current-junction area variation. We optimized Josephson junction fabrication process and demonstrated resistance variation of 9.8-4.4% and 4.8-2.3% across 22 × 22 mm2 and 5 × 10 mm2 chip areas, respectively. For a wide range of junction areas from 0.008 to 0.12 µm2, we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. We found that the dominate source of junction area variation limiting [Formula: see text] reproducibility is the imperfection of the evaporation system. The developed fabrication process was tested on superconducting highly coherent transmon qubits (T1 > 100 µs) and a nonlinear asymmetric inductive element parametric amplifier.

3.
Sci Rep ; 13(1): 4174, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914735

RESUMO

The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation [Formula: see text] less than 3.9% (from 150 × 200 to 150 × 600 nm2 area) and 7.7% (for 100 × 100 nm2 area) over 20 × 20 mm2 chip. Finally, we fabricate separately three 5 × 10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubits on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.

4.
Sci Rep ; 12(1): 6321, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428848

RESUMO

The Indium Tin Oxide (ITO) platform is one of the promising solutions for state-of-the-art integrated optical modulators towards low-loss silicon photonics applications. One of the key challenges on this way is to optimize ITO-based thin films stacks for electro-optic modulators with both high extinction ratio and low insertion loss. In this paper we demonstrate the e-beam evaporation technology of 20 nm-thick ITO films with low extinction coefficient of 0.14 (Nc = 3.7·1020 cm-3) at 1550 nm wavelength and wide range of carrier concentrations (from 1 to 10 × 1020 cm-3). We investigate ITO films with amorphous, heterogeneously crystalline, homogeneously crystalline with hidden coarse grains and pronounced coarsely crystalline structure to achieve the desired optical and electrical parameters. Here we report the mechanism of oxygen migration in ITO film crystallization based on observed morphological features under low-energy growth conditions. Finally, we experimentally compare the current-voltage and optical characteristics of three electro-optic active elements based on ITO film stacks and reach strong ITO dielectric permittivity variation induced by charge accumulation/depletion (Δn = 0.199, Δk = 0.240 at λ = 1550 nm under ± 16 V). Our simulations and experimental results demonstrate the unique potential to create integrated GHz-range electro-optical modulators with sub-dB losses.

5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692123

RESUMO

The hippocampus's dorsal and ventral parts are involved in different operative circuits, the functions of which vary in time during the night and day cycle. These functions are altered in epilepsy. Since energy production is tailored to function, we hypothesized that energy production would be space- and time-dependent in the hippocampus and that such an organizing principle would be modified in epilepsy. Using metabolic imaging and metabolite sensing ex vivo, we show that the ventral hippocampus favors aerobic glycolysis over oxidative phosphorylation as compared to the dorsal part in the morning in control mice. In the afternoon, aerobic glycolysis is decreased and oxidative phosphorylation increased. In the dorsal hippocampus, the metabolic activity varies less between these two times but is weaker than in the ventral. Thus, the energy metabolism is different along the dorsoventral axis and changes as a function of time in control mice. In an experimental model of epilepsy, we find a large alteration of such spatiotemporal organization. In addition to a general hypometabolic state, the dorsoventral difference disappears in the morning, when seizure probability is low. In the afternoon, when seizure probability is high, the aerobic glycolysis is enhanced in both parts, the increase being stronger in the ventral area. We suggest that energy metabolism is tailored to the functions performed by brain networks, which vary over time. In pathological conditions, the alterations of these general rules may contribute to network dysfunctions.


Assuntos
Epilepsia/metabolismo , Hipocampo/metabolismo , Animais , Estudos de Casos e Controles , Ritmo Circadiano , Modelos Animais de Doenças , Metabolismo Energético , Epilepsia/fisiopatologia , Glicólise , Hipocampo/fisiopatologia , Masculino , Camundongos , Fosforilação Oxidativa , Probabilidade , Convulsões/metabolismo
6.
Ann Neurol ; 85(6): 907-920, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30937971

RESUMO

OBJECTIVE: Despite decades of epilepsy research, 30% of focal epilepsies remain resistant to antiseizure drugs, with effective drug development impeded by lack of understanding on how seizures are initiated. Here, we report the mechanism of seizure onset relevant to most seizures that are characteristic of focal epilepsies. METHODS: Electric and metabolic network parameters were measured using several seizure models in mouse hippocampal slices and acutely induced seizures in rats in vivo to determine metabolic events occurring at seizure onset. RESULTS: We show that seizure onset is associated with a rapid release of H2 O2 resulting from N-methyl-D-aspartate (NMDA) receptor-mediated activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX). NOX blockade prevented the fast H2 O2 release as well as the direct current shift and seizurelike event induction in slices. Similarly, intracerebroventricular injection of NOX antagonists prevented acutely induced seizures in rats. INTERPRETATION: Our results show that seizures are initiated by NMDA receptor-mediated NOX-induced oxidative stress and can be arrested by NOX inhibition. We introduce a novel use for blood-brain barrier-permeable NOX inhibitor with a significant potential to become the first seizure-specific medication. Thus, targeting NOX may provide a breakthrough treatment for focal epilepsies. ANN NEUROL 2019;85:907-920.


Assuntos
Modelos Animais de Doenças , NADPH Oxidases/metabolismo , Convulsões/enzimologia , Convulsões/fisiopatologia , Animais , Ativação Enzimática/fisiologia , Hipocampo/enzimologia , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Neurobiol Dis ; 116: 28-38, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29705187

RESUMO

Brain glucose hypometabolism is an early symptom of acquired epilepsy, its causative mechanism yet unclear. We suggest that a bidirectional positive feedback linking seizures and hypometabolism (hypometabolism induces seizures while seizures disrupt glucose metabolism) may be a primary cause for acquired epileptogenesis. We reported recently that chronic partial inhibition of brain glycolysis triggers epileptogenesis in healthy rats. Here, by monitoring dynamic electrical and multiple metabolic parameters before and following seizure generation in mouse hippocampal slices using the 4-aminopyridine model of epileptiform activity, we show that in turn seizures are followed by a long-lasting glucose hypometabolism, indicating possible existence of a positive feedback in the mechanism of epileptogenesis. Seizures were associated with acute oxidative stress that may contribute to the subsequent glucose metabolism impairment, since exogenous application of H2O2 replicated the post-seizure metabolic effects. Exogenous pyruvate, the principal mitochondrial energy substrate with a broad spectrum of neuroprotective properties, effectively normalized the post-seizure glucose consumption. We have shown recently that pyruvate exhibited a strong antiepileptic action in three rodent chronic epilepsy models, while in the present study we find that pyruvate effectively normalizes impaired glucose metabolism following seizures. Together, our results provide the mechanistic basis for the metabolic concept of acquired epileptogenesis and an efficient treatment strategy.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Epilepsia/metabolismo , Glucose/metabolismo , Convulsões/metabolismo , Animais , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Convulsões/fisiopatologia
8.
J Neurosci Res ; 95(11): 2195-2206, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28150440

RESUMO

Metabolic abnormalities found in epileptogenic tissue provide considerable evidence of brain hypometabolism, while major risk factors for acquired epilepsy all share brain hypometabolism as one common outcome, suggesting that a breakdown of brain energy homeostasis may actually precede epileptogenesis. However, a causal link between deficient brain energy metabolism and epilepsy initiation has not been yet established. To address this issue we developed an in vivo model of chronic energy hypometabolism by daily intracerebroventricular (i.c.v.) injection of the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) and also investigated acute effects of 2-DG on the cellular level. In hippocampal slices, acute glycolysis inhibition by 2-DG (by about 35%) led to contrasting effects on the network: a downregulation of excitatory synaptic transmission together with a depolarization of neuronal resting potential and a decreased drive of inhibitory transmission. Therefore, the potential acute effect of 2-DG on network excitability depends on the balance between these opposing pre- and postsynaptic changes. In vivo, we found that chronic 2-DG i.c.v. application (estimated transient inhibition of brain glycolysis under 14%) for a period of 4 weeks induced epileptiform activity in initially healthy male rats. Our results suggest that chronic inhibition of brain energy metabolism, characteristics of the well-established risk factors of acquired epilepsy, and specifically a reduction in glucose utilization (typically observed in epileptic patients) can initiate epileptogenesis. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Metabolismo Energético/fisiologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Glicólise/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Desoxiglucose/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
J Neurophysiol ; 115(3): 1157-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26745250

RESUMO

Interpretation of hemodynamic responses in epilepsy is hampered by an incomplete understanding of the underlying neurovascular coupling, especially the contributions of excitation and inhibition. We made simultaneous multimodal recordings of local field potentials (LFPs), firing of individual neurons, blood flow, and oxygen level in the somatosensory cortex of anesthetized rats. Epileptiform discharges induced by bicuculline injections were used to trigger large local events. LFP and blood flow were robustly coupled, as were LFP and tissue oxygen. In a parametric linear model, LFP and the baseline activities of cerebral blood flow and tissue partial oxygen tension contributed significantly to blood flow and oxygen responses. In an analysis of recordings from 402 neurons, blood flow/tissue oxygen correlated with the discharge of putative interneurons but not of principal cells. Our results show that interneuron activity is important in the vascular and metabolic responses during epileptiform discharges.


Assuntos
Circulação Cerebrovascular , Epilepsia/fisiopatologia , Potenciais Somatossensoriais Evocados , Interneurônios/fisiologia , Consumo de Oxigênio , Córtex Somatossensorial/fisiopatologia , Animais , Bicuculina/toxicidade , Epilepsia/induzido quimicamente , Interneurônios/metabolismo , Masculino , Ratos , Ratos Wistar , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/citologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-25679555

RESUMO

Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

12.
Neurobiol Dis ; 75: 1-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533681

RESUMO

Interictal spikes, ictal responses, and status epilepticus are characteristic of abnormal neuronal activity in epilepsy. Since these events may involve different energy requirements, we evaluated metabolic function (assessed by simultaneous NADH and FAD+ imaging and tissue O2 recordings) in the immature, intact mouse hippocampus (P5-P7, in vitro) during spontaneous interictal spikes and ictal-like events (ILEs), induced by increased neuronal network excitability with either low Mg2+ media or decreased inhibition with bicuculline. In low Mg2+ medium NADH fluorescence showed a small decrease both during the interictal build-up leading to an ictal event and before ILE occurrences, but a large positive response during and after ILEs (up to 10% net change). Tissue O2 recordings (pO2) showed an oxygen dip (indicating oxygen consumption) coincident with each ILE at P5 and P7, closely matching an NADH fluorescence increase, indicating a large surge in oxidative metabolism. The ILE O2 dip was significantly larger at P7 as compared to P5 suggesting a higher metabolic response at P7. After several ILEs at P7, continuous, low voltage activity (late recurrent discharges: LRDs) occurred. During LRDs, whilst the epileptiform activity was relatively small (low voltage synchronous activity) oxygen levels remained low and NADH fluorescence elevated, indicating persistent oxygen utilization and maintained high metabolic demand. In bicuculline, NADH fluorescence levels decreased prior to the onset of epileptiform activity, followed by a slow positive phase, which persisted during interictal responses. Metabolic responses can thus differentiate between interictal, ictal-like and persistent epileptiform activity resembling status epilepticus, and confirm that spreading depression did not occur. These results demonstrate clear translational value to the understanding of metabolic requirements during epileptic conditions.


Assuntos
Epilepsia/metabolismo , Hipocampo/metabolismo , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Convulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Flavina-Adenina Dinucleotídeo/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Íons/metabolismo , Magnésio/metabolismo , Camundongos , Microeletrodos , NAD/metabolismo , Oxigênio/metabolismo , Receptores de GABA-A/metabolismo , Técnicas de Cultura de Tecidos
13.
J Cereb Blood Flow Metab ; 34(9): 1540-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25027308

RESUMO

Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation.


Assuntos
Encefalopatias/metabolismo , Hipocampo/metabolismo , Potenciais da Membrana , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transmissão Sináptica , Animais , Encefalopatias/patologia , Óxidos N-Cíclicos/farmacologia , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , NADP/metabolismo , Neurônios/patologia , Oxirredução/efeitos dos fármacos , Marcadores de Spin
14.
Brain ; 137(Pt 8): 2210-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919973

RESUMO

Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between 'normal' and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those transitions.


Assuntos
Eletroencefalografia/estatística & dados numéricos , Hipocampo/fisiopatologia , Modelos Neurológicos , Convulsões/classificação , Convulsões/fisiopatologia , Animais , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos , Hipocampo/citologia , Hipocampo/patologia , Humanos , Camundongos , Microeletrodos , Dinâmica não Linear , Reprodutibilidade dos Testes , Convulsões/etiologia , Peixe-Zebra
15.
J Cereb Blood Flow Metab ; 34(3): 397-407, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24326389

RESUMO

Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pH(i), [Ca(2+)](i) or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices--instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.


Assuntos
Astrócitos/metabolismo , Glicólise/fisiologia , Hipocampo/metabolismo , Rede Nervosa/fisiologia , Neurônios/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Estimulação Elétrica , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , NADP/metabolismo , Rede Nervosa/metabolismo , Consumo de Oxigênio/fisiologia , Potenciais Sinápticos/fisiologia , Técnicas de Cultura de Tecidos
16.
J Neurophysiol ; 103(6): 3139-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20457851

RESUMO

A successful outcome of epilepsy neurosurgery relies on an accurate delineation of the epileptogenic region to be resected. Functional magnetic resonance imaging (fMRI) would allow doing this noninvasively at high spatial resolution. However, a clear, quantitative description of the relationship between hemodynamic changes and the underlying epileptiform neuronal activity is still missing, thereby preventing the systematic use of fMRI for routine epilepsy surgery planning. To this aim, we used a local epilepsy model to record simultaneously cerebral blood flow (CBF) with laser Doppler (LD) and local field potentials (LFP) in rat frontal cortex. CBF responses to individual interictal-like spikes were large and robust. Their amplitude correlated linearly with spike amplitude. Moreover, the CBF response added linearly in time over a large range of spiking rates. CBF responses could thus be predicted by a linear model of the kind currently used for the interpretation of fMRI data, but including also the spikes' amplitudes as additional information. Predicted and measured CBF responses matched accurately. For high spiking frequencies (above approximately 0.2 Hz), the responses saturated but could eventually recover, indicating the presence of multiple neurovascular coupling mechanisms, which might act at different spatiotemporal scales. Spatially, CBF responses peaked at the center of epileptic activity and displayed a spatial specificity at least as good as the millimeter. These results suggest that simultaneous electroencephalographic and blood flow-based fMRI recordings should be suitable for the noninvasive precise localization of hyperexcitable regions in epileptic patients candidate for neurosurgery.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Potenciais Evocados/fisiologia , Modelos Lineares , Animais , Bicuculina/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Potenciais Evocados/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Ratos , Ratos Wistar
17.
Science ; 319(5871): 1845-9, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369150

RESUMO

The synaptic response waveform, which determines signal integration properties in the brain, depends on the spatiotemporal profile of neurotransmitter in the synaptic cleft. Here, we show that electrophoretic interactions between AMPA receptor-mediated excitatory currents and negatively charged glutamate molecules accelerate the clearance of glutamate from the synaptic cleft, speeding up synaptic responses. This phenomenon is reversed upon depolarization and diminished when intracleft electric fields are weakened through a decrease in the AMPA receptor density. In contrast, the kinetics of receptor-mediated currents evoked by direct application of glutamate are voltage-independent, as are synaptic currents mediated by the electrically neutral neurotransmitter GABA. Voltage-dependent temporal tuning of excitatory synaptic responses may thus contribute to signal integration in neural circuits.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Células Cultivadas , Dendritos/fisiologia , Difusão , Dipeptídeos/farmacologia , Magnésio/farmacologia , Masculino , Método de Monte Carlo , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...